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Abstract

Background: Dementia has become a major public health concern due to its heavy disease burden. Mild cognitive impairment
(MCI) is a transitional stage between healthy aging and dementia. Early identification of MCI is an essential step in dementia
prevention.

Objective: Based on machine learning (ML) methods, this study aimed to develop and validate a stable and scalable panel of
cognitive tests for the early detection of MCI and dementia based on the Chinese Neuropsychological Consensus Battery (CNCB)
in the Chinese Neuropsychological Normative Project (CN-NORM) cohort.

Methods: CN-NORM was a nationwide, multicenter study conducted in China with 871 participants, including an MCI group
(n=327, 37.5%), a dementia group (n=186, 21.4%), and a cognitively normal (CN) group (n=358, 41.1%). We used the following
4 algorithms to select candidate variables: the F-score according to the SelectKBest method, the area under the curve (AUC)
from logistic regression (LR), P values from the logit method, and backward stepwise elimination. Different models were
constructed after considering the administration duration and complexity of combinations of various tests. Receiver operating
characteristic curve and AUC metrics were used to evaluate the discriminative ability of the models via stratified sampling
cross-validation and LR and support vector classification (SVC) algorithms. This model was further validated in the Alzheimer’s
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Disease Neuroimaging Initiative phase 3 (ADNI-3) cohort (N=743), which included 416 (56%) CN subjects, 237 (31.9%) patients
with MCI, and 90 (12.1%) patients with dementia.

Results: Except for social cognition, all other domains in the CNCB differed between the MCI and CN groups (P<.008). In
feature selection results regarding discrimination between the MCI and CN groups, the Hopkins Verbal Learning Test-5 minutes
Recall had the best performance, with the highest mean AUC of up to 0.80 (SD 0.02) and an F-score of up to 258.70. The scalability
of model 5 (Hopkins Verbal Learning Test-5 minutes Recall and Trail Making Test-B) was the lowest. Model 5 achieved a higher
level of discrimination than the Hong Kong Brief Cognitive test score in distinguishing between the MCI and CN groups (P<.05).
Model 5 also provided the highest sensitivity of up to 0.82 (range 0.72-0.92) and 0.83 (range 0.75-0.91) according to LR and
SVC, respectively. This model yielded a similar robust discriminative performance in the ADNI-3 cohort regarding differentiation
between the MCI and CN groups, with a mean AUC of up to 0.81 (SD 0) according to both LR and SVC algorithms.

Conclusions: We developed a stable and scalable composite neurocognitive test based on ML that could differentiate not only
between patients with MCI and controls but also between patients with different stages of cognitive impairment. This composite
neurocognitive test is a feasible and practical digital biomarker that can potentially be used in large-scale cognitive screening and
intervention studies.

(J Med Internet Res 2023;25:e49147) doi: 10.2196/49147
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Introduction

Background
Dementia is currently a major public health problem and one
of the major causes of disability in older people [1,2]. Mild
cognitive impairment (MCI) involves abnormal cognitive
function in 1 or more cognitive domains without the loss of
functional abilities and skills for everyday life [3]. It represents
a transitional stage between healthy aging and dementia and
affects 10%-15% of the population over the age of 65 years [4].
Early detection of MCI and identification of modifiable risk
factors could profoundly reduce the prevalence of MCI and
subsequent dementia [5].

Current clinical biomarkers of cerebral amyloid and tau protein
deposition that rely on positron emission tomography (PET)
and cerebrospinal fluid (CSF) are invasive and expensive. The
use of these biomarkers to detect dementia in large populations
remains difficult [6]. Paper-and-pencil-based cognitive tests
remain the most commonly used first-line screening tools for
MCI and dementia [6,7]. However, these tests need to be
administered by trained assessors and are time-consuming [8].
The short duration of most primary care visits and the lack of
formally trained assessors are the key barriers to large-scale
assessment in the primary care setting [9]. Another challenge
of most widely used cognitive tests for MCI screening is that
their efficacy is compromised among populations with low
levels of education or illiteracy [10]. Therefore, there is an
urgent need for time saving, easily administered, and reliable
cognitive tools to carry out large-scale cognitive screening.

Objective
We previously developed the Chinese Neuropsychological
Consensus Battery (CNCB) via the Delphi method; all tests in
the CNCB are culturally appropriate and have been validated
in Chinese individuals [11]. The CNCB covers 6 subdomains,
including attention, memory, executive function, language,
visuospatial function, and social cognition [11]. We further
digitized this comprehensive cognitive battery such that it could

be administered on a touchscreen computer [12]. The
computerized CNCB is a comprehensive tool for the assessment
of cognitive decline, but it is time-consuming to complete as it
contains many tests. This study aimed to use machine learning
(ML) in the Chinese Neuropsychological Normative Project
(CN-NORM) cohort to develop a stable and scalable composite
neurocognitive test based on the CNCB for the early detection
of MCI and dementia. We also performed external validation
with the Alzheimer’s Disease Neuroimaging Initiative phase 3
(ADNI-3) cohort, which is ethnically different from the
CN-NORM cohort.

Methods

Study Design and Participants
CN-NORM was led by the Dementia Care & Research Center,
Peking University Institute of Mental Health (Sixth Hospital),
China. Participants were consecutively recruited for CN-NORM
from August 28, 2019, to November 1, 2022. CN-NORM was
a multicenter study conducted by 7 hospitals in China. As shown
in Figure S1 in Multimedia Appendix 1, the final study
population consisted of 871 participants, including the
cognitively normal (CN) group (n=358, 41.1%), the MCI group
(n=327, 37.5%), and the dementia group (n=186, 21.4%),
between the ages of 55 and 85 years.

All participants had more than 5 years of education. The
inclusion criteria for the MCI group were as follows: (1) met
the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) criteria for mild neurocognitive disorder
(NCD) [13], (2) had preserved global cognitive function, (3)
had intact or only mildly impaired daily living ability, and (4)
did not meet any criteria for dementia. The inclusion criteria
for the dementia group were as follows: (1) met the DSM-5
criteria for NCD [13] and (2) had a Clinical Dementia Rating
score of 0.5-2. The inclusion criteria for the CN group were as
follows: (1) did not meet the clinical criteria for cognitive
impairment and (2) did not have memory or cognitive
complaints or objective cognitive impairment. The exclusion
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criteria for all groups were as follows: (1) the presence of
neurological or mental disorders that may affect cognitive
function, such as schizophrenia or substance use disorders, or
(2) the presence of major medical problems, such as cancer or
cerebrovascular events.

ADNI-3 Cohort
The ADNI-3 cohort was used for validation. The data used in
the preparation of this paper were partly obtained from the
ADNI database [14]. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael
W Weiner, MD. The primary goal of the ADNI was to test
whether serial magnetic resonance imaging (MRI), PET, other
biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of
MCI and early Alzheimer’s disease (AD). The ADNI was
approved by the Institutional Review Boards of all participating
institutions, and written informed consent was obtained from
all participants at each site.

According to our study aim, we selected subjects in the ADNI
phase 3 (ADNI-3) who completed both the Trail Making Test-B
and the 10-word delayed recall test from the Alzheimer’s
Disease Assessment Scale-Cognitive (ADAS-Cog). Participants
were included consecutively. After data preprocessing and
removal of invalid records, the cohort included 743 individuals:
416 (56%) CN individuals, 237 (31.9%) patients with MCI, and
90 (12.1%) patients with dementia. The CN group showed no
signs of depression, MCI, or dementia. Experienced neurologists
or psychiatrists determined the best diagnosis (CN, MCI,
dementia) based on the results of clinical, neuropsychological,
and laboratory information. The diagnosis was also reviewed
and confirmed by the Central Review Committee in the ADNI.
The MCI group included patients with amnestic and
nonamnestic MCI.

Neuropsychological Assessment
Global cognitive function was evaluated with the Hong Kong
Brief Cognitive (HKBC) test, which is a pen-and-paper cognitive
test. The HKBC test was developed for older people with a
lower education level and covers multiple cognitive domains
[15]. Moreover, the HKBC test has been further validated for
identifying patients with amnestic MCI or dementia in a Chinese
population [16]. Among cognitive screening tools, the HKBC
test has the highest validity and reliability in identifying the
earliest stages of subtle cognitive decline [8,15]. Thus, the
HKBC test was used as the reference cognitive assessment tool
in this study.

The neurocognitive function of all participants in the CN-NORM
cohort was assessed using the CNCB [11]. Both the Trail
Making Test-B and the 10-word delayed recall test from the
ADAS-Cog were selected for model validation in the ADNI-3.
The specific content of the CNCB and cognitive tests in the
ADNI-3 cohort are shown in Table S1 in Multimedia Appendix
1 and the Method section in Multimedia Appendix 1. Details
of the assessment of depressive symptoms are shown in the
Method section in Multimedia Appendix 1.

All raw scores of the cognitive battery were adjusted for the
demographic predictors of sex, age, and education. Specifically,
in the CN group, cognitive test results were used as outcomes
in linear regression models with sex, age, and years of education
as predictors (included if significant). The result was converted
to a z-score based on the test score distribution in the present
population. The following equation was used to calculate the
z-score:

where Z is the z-score estimate for an individual subject, Y is
the raw score for an individual subject obtained from the

performance on a given test, is the predicted population mean
score, and SD is the standard deviation, which we substitute as
the CN group’s SD.

The model intercept, estimates, and root SD from the models
in the CN group were then applied to the cognitive test results
in both CN-NORM and ADNI-3 cohorts to calculate cognitive
test z-scores, as reported by Palmqvist et al [17], Borland et al
[18], and Shirk et al [19].

Data Selection and Preprocessing
The flowchart of participant recruitment for the CN-NORM
cohort is shown in Figure S1 in Multimedia Appendix 1. After
application of inclusion criteria and integrity filtering, 871
participants were retained and included in the analysis. Most
missing data were from the MCI or CN group, who were capable
of completing the tests. However, due to computer recording,
equipment problems, or the subjects being tired and not
completing the tests, these data were missing. The mean value
method was used to fill in the missing data.

Statistical Analysis
The characteristics of all participants were summarized using
descriptive statistics. Sex and marital status were analyzed with

the chi-square (χ2) test. Comparisons of continuous data results
among the 3 groups were analyzed using the nonparametric
(Kruskal-Wallis) test as distributions of those variables were
not normal. The distributions of these continuous data are listed
in Table S2 in Multimedia Appendix 1. P values were compared
against a Bonferroni-adjusted value.

Feature Selection and Model Development
The algorithm pathway for selecting optimal ML models is
shown in Figure 1. There were 31 primary variables derived
from 24 cognitive tests in the CNCB. Based on each test z-score,
we used the following 4 algorithms to perform feature selection:
the F-score according to the SelectKBest method, the area under
the curve (AUC) according to the logistic regression (LR)
algorithm, the P value according to the logit method, and
backward stepwise elimination. Specifically, the top 5 variables
in terms of both the F-score and the AUC that discriminated
the MCI group from the CN group were selected for inclusion
in candidate models. Different models were constructed after
considering the administration duration and complexity of
combinations of various models.
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Figure 1. The algorithm pathway of the brief panel for MCI screening. ADNI: Alzheimer’s Disease Neuroimaging Initiative; AUC: area under the
curve; CN: cognitively normal; CNCB: Chinese Neuropsychological Consensus Battery; HKBC: Hong Kong Brief Cognitive; H-L, Hosmer-Lemeshow;
LR: logistic regression; MCI: mild cognitive impairment; ROC: receiver operating characteristic; SVC: support vector classification.

Evaluation and Analysis
The performance of each model was assessed in terms of
discrimination and calibration. Receiver operating characteristic
(ROC) analysis was used to evaluate the discrimination ability
of different models via LR and support vector classification
(SVC) with a linear kernel algorithm. The regularization
parameter C in SVC was set to 0.5. To preserve the distribution
of classes in each split, a stratified 3-fold cross-validation
strategy was used to develop and validate the models [20]. The
mean AUC value was calculated based on 3 folds. The validation
set (1 fold of data) was set aside and used only for evaluation.
The DeLong test was performed to compare the ROC curves
among each model and HKBC test scores. Calibration curves
were used to assess the calibration of predictions of a binary
classifier. The Hosmer-Lemeshow (H-L) test was used to

determine the χ2 goodness of fit of each model. A 2-sided P
value of <.05 was considered statistically significant. Python
(v3.8), scikit-learn (v0.24.1), scipy (v1.5.2), statsmodels
(v0.13.2), matplotlib (v3.3.4), seaborn (v0.11.1), and SPSS
version 20.0 (IBM) were used for data analysis and visualization.

Ethical Considerations
CN-NORM was approved by the Ethics Committee at Peking
University Sixth Hospital—approval number: (2019) Ethics
(No.4). All participants provided written informed consent
before participation. They were not compensated for their
participation, and they were informed of this in the informed
consent form. Concerning data protection and confidentiality,
personal information was labeled in a nonpersonally identifiable
way.

Results

Characteristics of Participants
The characteristics of the participants in the CN-NORM and
ADNI-3 cohorts are shown in Tables 1 and 2. Significant
differences were observed in age, sex, and the Geriatric
Depressive Scale (GDS) score (but not education level) among
the CN, MCI, and dementia groups (P<.05) in the CN-NORM
cohort, while significant differences were found in all variables
(sex, education level, marital status, GDS score, and age) among
the 3 groups (P<.05) in the ADNI-3 cohort.
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Table 1. Demographic characteristics of participants from the CN-NORMa (N=871) cohort.

P valueHd/χ2 (df)eDementia group (n=186)MCIc group (n=327)CNb group (n=358)Characteristics

.00113.74 (2)113 (60.8)215 (65.7)186 (52.0)Female, n (%)

<.00197.5674.8 (7.2)72.0 (7.2)68.8 (5.4)Age (years), mean (SD)

.075.4512.4 (3.4)12.3 (3.4)11.9 (3.2)Education (years), mean (SD)

.067.62 (2)34 (18.3)49 (15.0)40 (12.1)Single, divorced, or widowed, n (%)

<.00154.736.7 (5.2)f6.2 (4.7)f3.3 (2.7)fGDS, mean (SD)

aCN-NORM: Chinese Neuropsychological Normative Project.
bCN: cognitively normal.
cMCI: mild cognitive impairment.
dEffect size of the Kruskal-Wallis test.
eAge, education, and the Geriatric Depressive Scale (GDS) score were analyzed using the nonparametric (Kruskal-Wallis) test as the distributions of

these variables were not normal. The chi-square (χ2) test was used to analyze sex and marital status.
f30 items.

Table 2. Demographic characteristics of participants from the ADNI-3a (N=743) cohort.

P valueHd/χ2 (df)eDementia group (n=90)MCIc group (n=237)CNb group (n=416)Characteristics

<.00119.24 (2)35 (38.9)103 (43.5)242 (58.2)Female, n (%)

.0496.0374.8 (7.0)74.8 (6.4)73.7 (6.7)Age (years), mean (SD)

<.00120.6715.8 (2.5)16.0 (2.5)16.8 (2.3)Education (years), mean (SD)

.00212.18 (2)11 (12.2)47 (19.8)115 (27.6)Single, divorced, or widowed, n (%)

<.00198.212.7 (2.3)f2.4 (2.4)f1.1 (1.4)fGDS, mean (SD)

aADNI: Alzheimer’s Disease Neuroimaging Initiative phase 3.
bCN: cognitively normal.
cMCI: mild cognitive impairment.
dEffect size of the Kruskal-Wallis test.
eAge, education, and the Geriatric Depressive Scale (GDS) score were analyzed using the nonparametric (Kruskal-Wallis) test as the distributions of

these variables were not normal. The chi-square (χ2) test was used to analyze sex and marital status.
f15 items.

Feature Selection and Model Development
The cognitive results of each group in the CN-NORM cohort
are presented in Tables S3 and S4 in Multimedia Appendix 1.
All variables’ raw and z-scores on the 24 cognitive tests in the
CNCB differed among the CN, MCI, and dementia groups
(P<.002). Except for the Digit Span-Backward Length Test, the
Eye Emotional Recognition Task-Gender Test, and the Clock
Drawing Test, scores of all variables differed between the CN
and MCI groups (P<.002). Part of the comparison of variable
data is shown in Figure 2. Except for social cognition, all other
domains differed between the MCI and CN groups (P<.008),
as shown in Figure 2A and Tables S3-S5 in Multimedia
Appendix 1. Memory and executive function were the 2
cognitive domains most severely impaired in the MCI group,
with the highest Cohen d (in descending order of impairment:
memory > executive function > language > attention>
visuospatial function > social cognition) as shown in Table S5
in Multimedia Appendix 1.

The feature selection results regarding discrimination between
the MCI and CN groups are shown in Figure 3 and Tables S6

and S7 in Multimedia Appendix 1. The Hopkins Verbal
Learning Test-5 minutes Recall had the best performance, with
the highest mean AUC of up to 0.80 (SD 0.02) and an F-score
of up to 258.70. Details of 5 different models are listed in Figure
4. Model 5 was simplified from model 4, and it included only
the Hopkins Verbal Learning Test-5 minutes Recall and the
Trail Making Test-B. Variables in model 5 were also candidate
variables with overlap on all 4 algorithms.

Based on the selection results, different models were
constructed, as shown in Figure 4A. Seven variables (Animal
Naming Test, Trail Making Test-B, Stroop Color Test, Stroop
Color-Word Test, Digit Span-Backward Length Test, Hopkins
Verbal Learning Test-5 minutes Recall, and Brief Visual
Memory Test-30 minutes Recall) were included in model 1
through backward stepwise elimination (Figure 4 and Table S6
in Multimedia Appendix 1). Model 1 covered 3 domains:
language, memory, and executive function (Figure 4B). The
top 5 variables, selected using SelectKBest and the AUC LR
methods, were similar (Table S7 in Multimedia Appendix 1 and
Figure 3); the other variables declined sharply in discriminative
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power. Therefore, the top 5 results were selected for inclusion
in model 2, which covered memory (Hopkins Verbal Learning
Test-5 minutes Recall, Hopkins Verbal Learning Test-20
minutes Recall, Logic Memory-1-30 minutes Recall, Logic
Memory-2-30 minutes Recall) and executive function (Trail
Making Test-B), as shown in Figure 4A. Given the
administration duration and complexity of combinations, these
variables were further divided into different combinations.
Model 3 was composed of semantic memory (Logic Memory

Test) and executive function (Trail Making Test-B). Model 4
was composed of word memory (Hopkins Verbal Learning
Test-5 minutes Recall and Hopkins Verbal Learning Test-20
minutes Recall) and execution function (Trail Making Test-B).
Model 5 was simplified from model 4, considering time; it
included only the Hopkins Verbal Learning Test-5 minutes
Recall and Trail Making Test-B. Variables in model 5 were
candidate variables with overlap on all 4 algorithms.

Figure 2. Cognitive profiles over six cognitive domains and part of variables data distribution among CN, MCI and dementia group. (A) Cognitive
profiles over six cognitive domains by CNCB battery among CN, MCI and dementia group after adjusting for age, sex and education. (B) The variables
data distribution of Hopkins Verbal Learning Test-5 minutes Recall by CNCB battery among CN, MCI and dementia group. (C) The variables data
distribution of Trail Making Test-B by CNCB battery among CN, MCI and dementia group. (D) The variables data distribution of HKBC by CNCB
battery among CN, MCI and dementia group. (E) The variables data distribution of ADAS-Cog word recall by ADNI-3 cohort among CN, MCI and
dementia group. (F) The variables data distribution of Trail Making Test-B by ADNI-3 cohort among CN, MCI and dementia group. ADNI, Alzheimer’s
Disease Neuroimaging Initiative; CBCB, Chinese Neuropsychological Consensus Battery; CN, Cognitive Normal Controls; HKBC, Hong Kong Brief
Cognitive; MCI, Mild Cognitive Impairment.
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Figure 3. Feature selection results using different ML methods for distinguishing the MCI and CN groups in the CN-NORM cohort. The graph shows
candidate variables’ selection results with SelectKBest using F-scores and P values, LR using the AUC, and backward stepwise elimination. Both dark-
and light-blue colors are the results of backward stepwise elimination. The bar chart (left axis) represents the importance of variables based on SelectKBest
with F-scores. The line chart (right axis) shows the importance of variables based on LR with the AUC. The top 5 variables were selected for ML model
building. P values in feature selection were compared against a Bonferroni-adjusted value, given the number of tests per hypothesis: α=.05/number of
tests (31), 0.002. AUC: area under the curve; CN: cognitively normal; CN-NORM: Chinese Neuropsychological Normative Project; MCI: mild cognitive
impairment; LR: logistic regression; ML machine learning.
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Figure 4. Description and comprehensive evaluation of scalability of different models for distinguish the MCI and CN groups. (A) Description of
different models. (B) Comprehensive evaluation of scalability of different models. CN: cognitively normal; HKBC: Hong Kong Brief Cognitive; MCI:
mild cognitive impairment.

As the Trail Making Test-B could be completed in 5 minutes
between the Hopkin’s Verbal Learning Test, it took
approximately 5 minutes to complete model 5. To
comprehensively evaluate the scalability of the different models,
the number of tests was multiplied by the administration duration
(number of tests × administration duration) to determine the
scalability of the models, with a low value being better. The
scalability of model 5 was the lowest, approximately 10 (2 ×
5), as shown in Figure 4B.

Internal Validation in the CN-NORM Cohort
The performance of each model was assessed in terms of
discrimination and calibration, as shown in Figure 5 and Table
S8 in Multimedia Appendix 1. For the MCI and CN groups,
compared to the HKBC test, all models, except model 3, had a
higher AUC and the DeLong test result was significant for all
models (P<.05) according to LR and SVC algorithms (Figure
5A). For the MCI and dementia groups, the discrimination
ability of all models was also similar to that of the HKBC test
score, with all P≥.05 (Figure 5B). Model 5 provided the highest
sensitivity among all models: up to 0.82 (range 0.72-0.92) and
0.83 (range 0.75-0.91) according to LR and SVC algorithms,
respectively. The positive predictive value (PPV) and negative

predictive value (NPV) of this model were similar as that of the
HKBC test: up to 0.78 (range 0.68-0.88) and 0.73 (range
0.71-0.75), respectively (Table S8 in Multimedia Appendix 1).

Calibration plots were generated and are shown in Figure 5.
Compared to the HKBC test, model 5 (LR), and model 3 (SVC),
models 1, 2, and 4 exhibited relatively good calibration for
discrimination between the MCI and CN groups (P≥.05)
according to both LR and SVC (Figures 5C and 5D,
respectively). All models, except model 2 (LR and SVC) and
model 3 (LR), achieved satisfactory calibration for
discrimination between the MCI and dementia groups according
to both LR and SVC, with all P≥.05 (Figure 5E and 5F,
respectively).

Model 5 achieved a higher level of discrimination as the HKBC
test score in distinguishing between the MCI and CN groups.
This model also exhibited a satisfactory goodness of fit in
calibration, given the perfectly calibrated results of the MCI
and CN groups’ comparison using the SVC algorithm as well
as the MCI and dementia groups’comparison after independent
verification using LR and SVC algorithms (P≥.05). Overall,
model 5 had both high scalability and discrimination ability for
MCI and dementia.
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Figure 5. Performance of different models in the CN-NORM cohort. AUC results of different models by different methods of discrimination between
(A) MCI and CN groups and between (B) MCI and dementia groups. (C, D) Calibration plots of different models on MCI using LR and SVC, respectively.
(E, F) Calibration plots of different models on dementia using LR and SVC, respectively. AUC and calibration plots were drawn based on LR and SVC
methods, respectively. A 3-fold cross-validation strategy was followed to calculate the results. The DeLong test for AUC comparison was conducted
between different models and the reference (HKBC test) on plots (A) and (B). P<.05 indicated a statistically significant difference. Calibration plots

(C-F) were evaluated with χ2 goodness-of-fit tests on predicted probabilities and observed proportions of events, where P≥.05 indicated the goodness
of fit. *P<.05. AUC: area under the curve; CN: cognitive normal; HKBC: Hong Kong Brief Cognitive; MCI: mild cognitive impairment; LR: logistic
regression; SVC: support vector classification.
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External Validation in the ADNI-3 Cohort
We further validated model 5 in the ADNI-3 cohort. This panel
of cognitive tests yielded similar robust discriminative
performance in the ADNI-3 cohort regarding differentiation
between the MCI and CN groups, with a mean AUC of up to
0.81 (SD 0) with both LR and SVC algorithms (Figures 6A and
6B, respectively). Regarding differentiation between the MCI
and dementia groups, this model also achieved good

discriminative ability, with a mean AUC value of up to 0.89
(SD 0) according to both LR and SVC algorithms (Figures 6C
and 6D, respectively). The sensitivity, specificity, PPV, and
NPV of model 5 regarding differentiation between the MCI and
CN groups with LR were up to 0.76 (range 0.76-0.76), 0.76
(range 0.74-0.78), 0.73 (range 0.71-0.75), and 0.78 (range
0.78-0.78), respectively (Table S8 in Multimedia Appendix 1).
Therefore, model 5 had good generalizability to the ADNI-3
cohort (Figure 6).

Figure 6. External validation of the CNCB-MCI model (model 5) in the ADNI-3 cohort using different ML methods. (A, B) The AUC plots of model
5 by LR and SVC for discrimination of MCI from CN, respectively. (C, D) The AUC plots of model 5 by LR and SVC for discrimination of dementia
from MCI, respectively. A 3-fold cross-validation strategy was followed to calculate the results. AUC plots were drawn based on LR and SVC methods,
respectively. CN, cognitive normal controls; MCI, mild cognitive impairment; AUC, Area Under Curve; LR, logistic regression; SVC, Support Vector
Classification; ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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Discussion

Principal Findings
Using ML methods, we developed a stable and scalable digital
composite neurocognitive test (model 5) based on the CNCB
that could distinguish not only between MCI and CN groups
but also between MCI and dementia groups. Compared to the
HKBC test, this composite neurocognitive test achieved similar
discrimination and better calibration abilities in differentiating
between MCI and CN groups as well as between MCI and
dementia groups. Moreover, the test was more scalable,
contained only 2 brief tests, and was more readily accepted by
the elderly. It took approximately 5 minutes to complete the
test. The test also had good generalizability to the ADNI-3
cohort. Overall, this digital composite neurocognitive test has
both high scalability and high stability for the early
discrimination of dementia. It could be not only used as a
feasible and practical digital biomarker in large-scale cognition
screening but also used in intervention studies.

Comparison With Other Studies
The digital composite neurocognitive test includes 2 simple and
short tests, namely the Hopkins Verbal Learning Test-5 minutes
Recall and the Trail Making Test-B, which evaluate memory
and executive function, respectively. Both tests in this model
were also common dominants identified as candidate variables
according to the 4 algorithms used. The Hopkins Verbal
Learning Test is a brief, multicomponent word list–learning
task that is commonly used to assess verbal learning and
memory [21]. It showed the best performance in feature
selection, with the highest mean AUC and F-score. To reduce
the effect of learning, there are 6 alternate versions of the
Hopkins Verbal Learning Test, and some of them have shown
good intertest reliability in Chinese populations [22]. Therefore,
the Hopkins Verbal Learning Test can be frequently used to
evaluate cognitive change. The Trail Making Test consists of
2 parts (A and B) and is one of the most frequently used
measures to distinguish subjects with cognitive impairment
from CN subjects in clinical neuropsychology [23]. Parts A and
B are widely used to assess the cognitive processing speed and
executive function, respectively [23]. To minimize the impact
of linguistic and cultural diversity, many variants of the Trail
Making Test have been developed; the version in the CNCB is
the Color Trail Test.

Although cognition is multifaceted and MCI can affect many
different cognitive domains [24], assessing cognitive function
in all domains with a short test is not feasible; thus, instruments
must strike a proper balance between the duration and depth of
testing to maximize their utility [9]. A consensus of clinical and
research experts focused on MCI and AD indicated that a useful
cognitive tool should encompass multiple cognitive domains
and, at a minimum, assess memory and executive function [9].
The memory and executive function cognitive domains have
been extensively validated as sensitive measures of early
cognitive decline in AD [25,26]. In this study, cognitive function
in 6 cognitive domains suggested that memory and executive
function are the 2 cognitive domains most severely impaired in
MCI. Guo et al [27] developed a brief cognitive test for detecting

MCI only covering the memory and executive function domains
[27]. However, our digital composite neurocognitive test
contains just 2 brief tests, which is more time efficient and is
more readily accepted by the elderly.

This brief composite neurocognitive test is digital, which entails
the following advantages. First, it is easy to operate and no
specialized training is needed. The test can be administered with
the help of caregivers or nurses or can even be self-administered
at home following the manual. Moreover, a digital platform
with standardized operation can provide consistent analysis and
interpretation, and automated scoring. This computerized test
is more suitable for populations with low levels of education,
large sample sizes, and establishment of test norms [28].
Therefore, it could serve as a suitable tool for large-scale
cognitive screening in community and primary care settings.

Strengths of the Study
This study has a few strengths. The candidate variables and
models were based on comprehensive neuropsychological
assessments from the CNCB [11], which contains 31 primary
variables and 24 cognitive subsets covering 6 cognitive domains.
All these subsets are culturally appropriate and have been
validated in Chinese individuals. The models developed from
the CNCB are more reliable and suitable for populations with
low levels of education. Second, in this study, to ensure that the
results were more reliable and credible, multiple different ML
algorithms were used for feature selection and assessment. In
the feature selection stage, we adopted the F test, logit regression
(and corresponding P value), the AUC according to LR, and
backward stepwise elimination. The optimal results of these 4
methods all indicated the 2 variables included in model 5. We
also adopted a stratified cross-validation method based on
sampling. This method ensures that the training set is consistent
with the overall distribution in data labels and features, ensuring
the mean of the 3-fold results is closer to the true value of the
population. We independently validated the ROC and AUC
results of LR based on the maximum likelihood estimation and
the SVC algorithm based on structural risk minimization. The
results showed no significant differences between the 2
algorithms. Third, this study was a nationwide multicenter study
in China, and the MCI group contained different subtypes of
MCI, including amnestic and nonamnestic MCI; the dementia
group included AD, frontotemporal dementia, and dementia
with Lewy bodies. Models derived from this heterogeneous
population will be more stable when used in other populations.
Fourth, reports of excellent sensitivity and specificity for a given
instrument must consider the possibility that performance is
inflated by high rates of dementia. In this study, we assessed
the diagnostic performance of composite tests in separate groups
of patients with MCI and dementia.

Weaknesses of the Study
This study has a few limitations. First, the diagnosis of MCI or
dementia was based on DSM-5 criteria. In this study, confirmed
biomarkers, such as the CSF or PET imaging, were lacking.
Confirmation with biomarkers could improve the credibility of
results. Second, the cognitive tests used in the ADNI-3 cohort
were slightly different from those used in the CN-NORM cohort,
which may cause information bias. However, the core of these
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cognitive tests was the same, and they were implemented in
similar ways. Third, this study was based on a cross-sectional
design. Further longitudinal studies with larger sample sizes
may explore the ability of this brief composite neurocognitive
test to monitor the conversion from normal cognition to MCI
and dementia. Fourth, although this study was a multicenter
study conducted across China, all participants were subjects
who were willing to undergo cognitive assessment rather than
individuals randomly recruited from the community. Thus, this
selection bias may limit the generalizability of our findings.
Fifth, although we adjusted for age, gender, and education when
calculated cognitive function, we could not rule out the
possibility of confounding factors, such as sleep-related issues,
anxiety, and depression, that may affect cognitive function. Six,
the z-score was converted based on the current normal group
data rather than all normal subject in China and SDs may be

smaller than they actually were. In addition, as distributions of
the most of test scores were not normal, z-score conversion may
also introduce some bias. However, it is one of the commonly
used methods in the neurocognitive field [17-19], and the results
of this method are more understandable and acceptable to
professionals in the neurocognitive field.

Conclusion
We developed a stable and scalable digital composite
neurocognitive test based on ML that can differentiate not only
MCI from normal cognition but also MCI from dementia. This
digital test consists of the Hopkins Verbal Learning Test-5
minutes Recall and the Trail Making Test-B and is time efficient
and easily administered. The test represents a feasible and
practical digital biomarker for use in large-scale cognitive
screening and might be useful in intervention studies.
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